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The motion of an absolutely rigid body attached to a fixed base by a two-degrees-of-freed0m joint in a uniform gravitational 
field parallel to the fixed axis of the joint is studied qualitatively. Various kinds of motion are described and analysed, depending 
on the total mechanical energy and the projection of the angular momentum of the body onto the fixed axis of the joint as well 
as on the inertial paran~eters of the system. 

This paper is a continuation of [1]. 

1. E Q U A T I O N  OF M O T I O N  

We consider an absolutely rigid body attached to a fixed base by a two-degrees-of-freedom joint with 
axes perpendicular to one another (Fig. 1). The joint is assumed to be ideal, i.e. no friction is taken 
into account on any of its axes. To describe the motion we introduce two right-handed Cartesian systems 
of coordinates: a fixed (inertial) systemX1X2X 3 and a systemxlx2x 3 attached to the rigid body. We place 
the origin of each system of coordinates at the point of intersection O of the axes of the joint, the axes 
X3 andXl being directed along the fixed and the moving axes of the joint, respectively. All kinematically 
feasible states of the rigid body (systems of coordinates xtxzz3) relative to the system of coordinates 
XtXzX3 can be described by two angles: the angle cx between the axesX1 andxl and the angle [3 between 
the x2 axis and the ]plane XrX2. Henceforth these angles will be taken as the generalized coordinates of 
the mechanical system under consideration. 

The matrix F of the transformation from the system of coordinatesXrX2X 3 toxp¢~c 3 can be expressed 
in terms of cx and ~I as follows [1]: 

II cosa  sin cx 0 I 

F = -s inacosl3  cosacosl3 sinl3 (1.1) 

sin ¢x sin 1~ - cos ¢x sin [3 cos 13 

The kinetic energy of an absolutely rigid body on a two-degrees-of-freedom joint is equal to [1] 

T = ~K(~l) d 2 + ~2JH~l 2 - b(~) dt~ (1.2) 

K(I~) = J22 sin2 13 + J33 cOs2 [~ - 2J23 sin 13 cos 13, b(13) = JI2 sin 13 + JI3 COS [~ 

Here J//(i = 1, 2, 3) are the axial moments of inertia and J# = J2i (i # j, i, j = 1, 2, 3) are the products 
of inertia of the rigid body in the system of coordinates xpc2x3. Henceforth it is assumed that the ellipsoid 
of inertia of  the rigid body is non-degenerate and the corresponding inertia tensor J=  II JO II is positive 
definite. 

Let the mechanical system be subject to a uniform gravitational field with intensity vector g. In this 
case the potential energy of the rigid body can be expressed by the scalar product 

U = -re(g, re) (1.3) 

where rc is the position vector of the centre of mass relative to O and rn is the mass of the body. 
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We denote bygl, g2,g3 the components o fg  in the fixed system of coordinates XrXzX 3 and by Pl, 132, 
P3, the components of  rc in the moving system of coordinates xvr~3. Taking the projections of  g onto 
the axes of the system of coordinates xlx~c3, using (1.1), and expanding the scalar product (1.3), we get 

U = - m[pl (gl cos a + g2 sin a )  + P2 (-gl sin a cos 15 + gz cos a cos 15 + g3 sin 15) + 

+P3 (gl sin a sin 15 - g2 cos a sin 15 + g3 cos 15)] (1.4) 

The Lagrange equations of a mechanical system with kinetic energy (1.2) and potential energy (1.4) 
have the form 

K(15) 6~ - b(13) ~ + [(J22 - J33) sin 213 - 2J23 c o s  2131 & ~  - (J12 cos15 - 2"13 sin 15) ~2 = 

= m [ P l  ( - g l  s in  a + g2 Cos a )  + (P3 sin 15 - P2 cos 13) (gi cos a + g2 sin a ) ]  

-b(15) ~ + Jll~ - / ~  [(J22 - "/33) sin 215 - 2,/23 cos 215] 6t 2 = 

(1.5) 

An absolutely rigid body on an ideal two-degrees-of-freedom joint subject to a uniform gravitational 
field is a conservative mechanical system, and hence the total energy E = T + U is a first integral of 
the equations of motion (1.5). 

The equations of motion (1.5) form a fourth-order system of non-linear differential equations 
containing a large number of parameters, which makes it practically impossible to study the system in 
the general case. However, in a number of special cases, considered in the following sections, the system 
can be significantly simplified and admits of an effective qualitative analysis. 

2. T H E  CASE OF G R A V I T A T I O N A L  F I E L D  P A R A L L E L  TO 
T H E  F I X E D  AXIS OF T HE  J O I N T  

If the gravitational field is parallel to the fixed X3 axis of the joint, then (1.4) can be simplified, and 
takes the form 

U =mg(p2sin15+p3cos15) (g=-g3) (2.1) 

Henceforth we shall assume that g > 0. This involves no loss of generality, for if the gravitational 
field is parallel to the fixed axis of the joint, the system of coordinates X~X:~X 3 can always be chosen in 
such a way that the X 3 axis is directed opposite to the vector g, so that g > 0. 

The potential energy (2.1) is independent of ~. Since the kinetic energy (1.2) is also independent of 
a, it follows that a is the cyclic generalized coordinate when gl = g2 = 0, which implies that 

L =/gT / i36t -- K(15) 6t - b(15) 1~ (2.2) 
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is a first integral of  the system under consideration. L is the projection of the angular momentum onto 
the fixed X3 axis. 

The presence of  the first two integrals, E = T + U and L, enables us to separate the variables ¢x and 
[3 and reduce the integration of (1.5) to quadratures. Expressing a in terms of 13 and I~and using (2.2), 
we have 

6t = [L + b([3) I~1 / K([3) (2.3) 

Substituting (2.3) into (1.2), the energy integral can be represented as follows: 

~a([3) 132 + 1-I([3, L) = E, a(l~) = [ JI1K([3) - b 2 ([3)]/K([3) (2.4) 

FI([3, L) = L 2 / (2K([3)) + rag(p2 sin [3 + P3 cos [3) 

Note that K(13) and a(13) in (2.3) and (2.4) are positive because the inertia tensor of a rigid body is 
positive definite [1]. 

Equation (2.4) describes the variation of 13 and can be reduced to quadratures 

l(13o,~)=+(t-to), l ( x , y )=I  I : a(~) ~Y2 
, L2te_n(~,L)]j d~ (2.5) 

where ~ = 13(t0) and to is the initial instant of  time. The sign on the right-harid side of (2.5) is the same 
as that of  1~ when 13 ~ 0 or that of --0II/0~ when 13 = 0 and 01-I/013 g 0. If 13 = 0 and ~1-I/013 = 0, the 
system is in a steady state with respect to 13. 

The function 13 = 13(t) is defined implicitly by (2.5). Substituting this function into (2.3), we can find 
ct = ct(t) by integrating the right-hand side of (2.3) with respect to t. 

We will investigate: qualitatively all possible kinds of motion of system (2.3), (Z4). First we shall study 
the motion with respect to 13 described by Eq. (2.4). This equation is formally identical with the equation 
of motion of a mechanical system with one degree of freedom and with kinetic and potential energy--  
a([3) ~/2 and 1-I(13, L), respectively. The phase plane method serves as the most convenient and graphic 
method of studying :such systems. It consists of constructing the graphs of 6(13) from (2.4) for various 
values of E and determining from these graphs the characteristic features of the motion, which depend 
on the form of 1-1(13, L). 

3. M O T I O N  W I T H  R E S P E C T  TO 13 F O R  gl = g2 = 0. S P E C I A L  CASES 

3.1. P2 = P3 = 0. This means that the centre of mass of the rigid body lies on the moving xl axis of 
the joint. In this case the gravitational force does not affect the motion of the system at all, the behaviour 
of the system being l~he same as the inertial motion of a rigid body on a two-degrees-of-freedom joint 
studied in [1]. 

3.2. J22 = J33, J23 = 0. In this case K(13) = J22 = const and 1-I([3, L) is a sinusoid mg(pzsin [3 + p3cos 13) 
of  period 2g shifted along the ordinate axis by an amount A = L2/(2J22). This function has two 
extrema in the interval [0, 2g): a maximum rlma x = A + ~ (~t rag(p2 + p2)1/2 which is reached 
at 

j'[3., if P2 ~> 0 P3 (3.1) ~=~1=~2n-[3,, i f  p 2 < O '  [~* = arcc°s (p2 + p2)~ 

and a minimum 1-[mi n = A - ~ which is reached at 

=II3. +n ,  if p 2 ~ 0  

[3 = [32 I n  - I~,, if P2 < 0 (3.2) 

In the case under consideration the phase plane of system (2.4) is qualitatively the same as that of 
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a mathematical or physical pendulum. The fact that the "moment of inertia" a(13) of a pendulum depends 
on 13 is unimportant in a qualitative analysis. 

This implies the following possibilities for the motion with respect to 13: 
1. If  E < IImha, no motion is possible. 
2. I'Imi n < E < 1-Imax, the system performs periodic oscillations about the stable steady state 13 = 

corresponding to a minimum of 111(13, L). The angle 13 varies in the range 13_ ~< 13 ~< 13+, where 

I]+ = 1~2 + A ,  A=arccos{[L21(2J22)-El l[mg(p~+p~)~]}  (3.3) 

The amplitude and period of these oscillations are equal, respectively, to A and 

x~ = 2I(13_, 13÷) (3.4) 

Formula (3.3) can be obtained by solving the equation A + mg(p2sin ~+p3cos 13) = E. 
3. If E > l-lmax, the system rotates periodically with period 

'~r ---- 1(0, 2n )  (3 .5)  

4. If E > 17rain, the system is in the stable equilibrium state 13 = 132. 
5. I f E  > l-Imax, the system is either in the unstable equilibrium state 13 = I~1, or the body rotates about 

the xl axis of  the moving joint with infinite period. In the phase plane this corresponds to the motion 
along the separatrix. 

4. M O T I O N  W I T H  R E S P E C T  TO 13 F O R g l  = g2 = 0. 
T H E  G E N E R A L  CASE 

In the general case the function 111(13, L) in (2.4) can be represented as (see also [1]) 

l-I(13, L) = L 2 / [J22 + J33 + R cos(2~ + vj )] + It cos([3 + v 2) (4.1) 

R = [(J33 - J22)  2 + 4J23]  ~ 

c ° s v l = ( J 3 3 - J 2 2 )  IR,  s i n v l = 2 J 2 3 / R  

cosY2 =mgp3 l i t ,  sinv 2 = - m g p 2  l i t  

When analysing (4.1) it is convenient to rewrite it as follows: 

1-I(13, L) = i t f (x ) ,  f ( x )  = e I (1 + ~,cos2x) + cos(x + v) (4.2) 

e = L2 /[it(J22 + J33)], k =  R /  (J22 + J33) 

x = l~+v  I / 2 ,  v = v  2 - v  I / 2  

Since the inertia tensor J = ]1Jo" II (i, j = 1, 2, 3) is positive definite, it follows that J2.2 > 0, J2ff33 - j 2  
> 0, which implies a limit for ~,: 0 ~< L < 1. The case ~. = 0 corresponds to J22 = J23, J23 = 0 and 
was considered in Section 3. In Section 4 we therefore assume that 0 < ~ < 1. 

The qualitative nature of the motion of the system with respect to [3 depends on the form of 1-I(13, 
L). Each stationary point of this function corresponds to an equilibrium state with respect to 13, the 
type of which is determined by the type of stationary point. A minimum of 111(13, L) corresponds to a 
stable equilibrium state of the centre type, a maximum corresponds to an equilibrium state of the saddle 
type, and a point of inflection corresponds to an unstable equilibrium such that arbitrarily small deviations 
from it give rise to finite displacements in only one specific direction. 

One can see from (4.2) that the dependence of 111(13, L) on [3 is determined byf(x), which is a 2•- 
periodic function of  x and v. Henceforth we shall assume without loss of  generality that 0 ~< x ~< 2n 
and 0 ~< v ~< 2r~. 

We shall find the number of stationary points of the function (4.2) depending on e, v and ~.. 
Differentiatingf(x), we obtain the equation 

2eZ, sin2x/(1 + k cos2x) 2 - sin(x + v) = 0 (4.3) 

whose roots are the desired stationary points. In general, this equation does not admit of a simple 
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analyt ica l  so lu t ion  expressing all roo t s  as  funct ions  o r e ,  v, ~,. Thus,  we  express  e in t e rms  o f  x, k, v us ing 
Eq.  (4.3) 

e = e(x; v, ~,) = (1 + ~, cos2x)2sin(x + v)/(2~, sin2x) 

x ~ hi~2 (i = 0, 1, 2, 3) 

(4.4) 

and  s tudy (4.4) as a funct ion o f x  for  va r ious  ~, and  v. T h e  to ta l  p r e i m a g e  o f  a fixed va lue  E t aken  in the  
in terval  [0, 2n),  which co r re sponds  to  (4.4), is the  set  o f  s ta t ionary  po in t s  o f f (x )  for  the  given e i f x  = 
~//2 (i = 0, 1, 2, 3) are  no t  the  roo ts  o f  Eq.  (4.3). T h e s e  values  a re  the  roo t s  o f  Eq.  (4.3) only  if  v = 
rd/2 (i = 0, 1, 2, 3). In  this  case the  co r r e spond ing  numbe r s  o f  the  f o r m x  = x//2 mus t  be  a d d e d  to the  
set  o f  s ta t ionary  poin ts  found  f rom (4.4). 

F r o m  (4.4) it folk~ws tha t  E(x; v, ~,) = -e(x + n; v, ~,) and  E(x; v, ~,) = -e (x ;  v +  g,  ~,). This  enab les  us  
to  ca r ry  ou t  the  computa t ions  in the  subset  0 ~< x < ~r, 0 ~< v ~< n, r a the r  than  in the  whole  set  0 ~< x 
< 2~, 0 ~< v ~< 2~r, wi thout  loss o f  general i ty .  

For an arbitrary v e [0, 21r) an analytical study of (4.4) proves difficult. Below we present detailed results applying 
to some special cases (v = 0 and v = ~/2) which admit of such a study, and we present the graphs of (4.4) constructed 
for a number of various values of v and 7~. 

4.1. v = 0. In this case, for any e, Eq. (4.3) has rootsx = 0 andx = •, which cannot be found from (4.4). Analysis 
indicates thatx = 0 corresponds to a maximum of the functionf(x) in (4.2) i fe  < e. = (1 + ~,)2/(4~) and a minimum 
ff e > E.. If e = e., thenf(x) has a maximum atx  = 0 when ~, ~< 1/7 and e < ~. and a minimum when ~, > 1/7. Since 
f(x) changes into -f(x) when x is replaced byx  + ~ and e by --E, the properties of  the stationary point x = 0 imply 
that f(x) has a maximum a tx  = ~r i fe  < - e .  and a minimum f ie  < -e . .  I f e  = -e . ,  thenx = it is a minimum off(x) 
when ~, ~< 1/7 and a maximum when 7t > 1/7. 

In Figs 2 and 3 the bold solid lines represent graphs of e(x, 0, ~,), which characterize qualitatively the behaviour 
of e(x; 0, ~,) for ~, <~ 1/7 and ~, > 1/7, respectively, as well as the vertical linesx = 0 andx ffi x corresponding to the 
stationary points off(x) from (4.2) for v = 0 and any e. We observe that for ~ > 1/7 the function e(x; 0, X) has local 
minima a tx  = x. = arccos[(1 - ~,)/(6~,)] andx = 21r - x .  with value ~ = e0 = 212(1 - ~,)/313;z~, -lrz and local maxima 
at x = 7r __. x. with vahle e = -e0. Some sections of the solid lines are accompanied by dashed lines. The function 
f(x) has a minimum at each stationary point that corresponds to these sections and a maximum at each of the 
remaining points when e ~ e0. When e = e0, the function f(x) has a point of inflection. 

Diagrams similar to: those in Figs 2 and 3 enable us to determine the number and type of  stationary points of 
f(x) for any given e and, consequently, also the number and type of the corresponding equilibrium states of the 
mechanical system in ]~and with respect to I~. To this end one must draw the straight line e = const. Each point of 
intersection of this line and the bold solid lines in the diagram corresponds to a stationary point, the type of which 
depends on whether or not a dashed line is present next to the solid one in a neighbourhood of the point of 
intersection. In parti~alar, these diagrams imply that the number of stationary points may be equal to two, four, 
or six, depending on Z, and e. 

As an illustration, in Fig. 4 we present the graphs off(x) in the interval 0 <~ x ~< ~ for v = 0, ~, = 3/4 and various 
values of e: 1 - e = 0.1 (e < ~ = 4(2/9); 2 - e = e0; 3 - e = 1/3 (e0 < e < e. = 49/48); 4 - e = 1.5 (e > e.). 
The graphs corresponding to the interval n < x < 2~ can be obtained by taking the mirror image of the curves in 
Fig. 4 with respect to 1the straight line x = n. 
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4.2. v = ~2. In this case, for any e, Eq. (4.3) has roots x = rd2 and x = 3rd2 which cannot be found from (4.4). 
The function f(x) in (4.2) has a minimum atx = ~ if¢ ~< e* = (1 - ~.)2/(4~,) and a maximum ire > g*. The point 
x = 3r~2 is a maximum when e >t -e* and a minimum when e < -e*. 

The diagram used to analyse the stationary points of the function (4.2) for v = ~ 2  is presented in Fig. 5, from 
which one can see that in this case f(x) has either two or four stationary points. 

4.3. Arbitrary v # ~//2. In this case e(x; v, ~.) defined by (4.4) vanishes at x = • - v and x = 2~ - v if v e (0, 7r) 
and atx = 2~ - v andx = 3x - v i fv  e (x, 2n). Asx  ~ +0,x --~ 7r/2 ___ 0,x --~ ~ --. 0,x ~ 3~2 -+ 0,x ~ 2~ - 0, 
the function (4.4) tends to ---  or +**, depending on v. 

The numerical analysis of e(x; v, ~.) indicates that, in general, in the interval [0, 2~) the graph of this function 
can have from two to six points of intersection with the straight line e = const depending on ~, v and e. Accordingly, 
the mechanical system under investigation can have from two to six relative states of equilibrium (with respect to 
the I~ coordinate). 

In Figs 6 and 7 we show diagrams (similar to those in Figs 2, 3 and 5) to determine the number and type of 
stationary points of the function (4.2). Figure 6 corresponds to ~ = 0.75 and v = ~/8, while Fig. 7 corresponds to 
Z, = 0.75 and v = 5~/8. 

To conclude this section we will summarize the results on  the mot ion  of  a rigid body or  a two-degrees- 
of - f reedom joint  in a uni form gravitational field parallel to  the fixed axis o f  the joint with respect  to 13. 
We will denote,  by nmi  n and 1/max, respectively, the absolute min imum and maximum of  1-1(13, L )  with 
respect  to 13. 

1. I-I(13, L )  is a 2If-periodic function in 13 and, depending on the relationships between the projection 
o f  the angular m o m e n t u m  (L) on to  the fixed axis of  the joint  and the inertial parameters  o f  the rigid 
body, it can have f rom two to six stationary points in the r a n g e 0  ~ 13 < 2rr, which correspond to different 
states of  equilibrium of  the system with respect to 13. Each stationary point  o f  I/(13, L )  can be a maximum, 
a minimum, or  a point  of  inflection. The minima correspond to stable states o f  equilibrium, while the 
maxima and the points o f  inflection correspond to unstable ones. 
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2. The motion of the system is possible only if the relationship between the first integrals (E and L) 
and the inertial parameters is such that E ~> IImin. 

3. If E > I/max, the rigid body rotates periodically with respect to [3. The period can be computed 
from (3.5). 

4. If rlmi n ~< E ~< Hmax and E is not equal to 1"1([3, L) at one of the stationary points, the rigid body 
oscillates periodicallty between [3- and 6+, where [3- and 6+ are two consecutive solutions of the equation 
1"I([3, L) = E such that 1-I([3 , L) < E for 6- < 13 < [3+. The period of these oscillations is finite and can 
be computed from (3.4). Note that several different oscillation intervals ([L, [3+) may correspond to 
the same E and L. 

5. If rlmi n ~< E ~ Hmax and at least one of the points [3- or 6+ defined in (4) coincides with a local 
maximum or point of inflection of 1"I(6, L), the period of the corresponding oscillations of the body 6- 
< [3 < 6+ tends to infinity. A local maximum or point of inflection of I1([3, L) determines the location 
of an unstable equilibrium with respect to [3. It follows that steady motion such that [3 = 13+ or 6 = [3_ 
is possible in the case in question. 

6. If I-Imi n ~ E ~< ]['Ima x and E coincides with one of the local minima of 17([3, L), steady motion of the 
system is possible such that the rigid body is in one of the stable states of equilibrium with respect to 
[3, which corresponds to the given local minimum. 

The proof of points (2)-(6) follows from an analysis of the motion of a rigid body with respect to [3 
as a conservative mechanical system with one degree of freedom for which the energy conservation 
equation has the form (2.4). Since the method of such an analysis has been presented in detail (see, 
for example, [2, 3]), we will state only the final results here. The motions (2)--(6) exhaust the set of 
qualitatively different motions of the system with respect to 13. 

The phase portraits of the system in the plane of [3 and 13 for various L can be constructed by solving 
Eqs (2.4) for 6 for all admissible E. 

5. MOTION WITH RESPECT TO ~t W H E N g l  = g2 = 0 

In the system under consideration, the motion with respect to et does not differ qualitatively from 
the inertial motion with respect to the same coordinate of a solid on a two-degrees-of-freedom joint 
[1]. All the relevant discussion and proofs contained in [1] can be carried over almost word-for-word 
to the case in hand. We shall therefore only state the final results. 

In each period of rotation (oscillation) of the body with respect to [3 the angle tx changes by the same 
amount Atx. In the case of rotations 

2~ 

Atx=LI2 r, f2r= I F(E,L,6)d6 (5.1) 
0 

1 ( K(6)jll_b2(6) ]Y2 
F = ~ 2EK(6)- L 2 -2mgg(6) (132 sin~+P3 cos6) 

and in the case of oscillations 

Atx=Lf2,, f 2 , = 2  1 F(E,L,6)d ~ (5.2) 
13_ 

Here 6- and [3+ are the values of [3 corresponding to the extreme positions of the oscillating body (6- 
< [3+). From (5.1) a~ad (5.2) it follows that if IA- = I L I f~,/(2~) ( ~  = I L I t2J(2n)) is a rational number, 
then the corresponding motion of the system as a whole is periodic, the shortest period being equal to 
nrXr (n,x~), where n,(n,) is the least natural denominator of the rational number ~(IJ-o) and Xr(X,) is the 
period of rotation (oscillation) of the body with respect to [3. If I#(1~) is an irrational number, the motion 
of the system is not periodic. 

From (2.3) it follows that the state of equilibrium [3 -- ~" with respect to [3 corresponds to the rotation 
of the body about tlhe fixed X3 axis of the joint with constant angular velocity a = L/K(6). 

Formulae (5.1) and (5.2) can be obtained by integrating (2.3) with respect to time from to to to + xr 
(to + %, respectively) with the variable integration replaced by 13 by virtue of (2.5). Here to is an arbitrary 
initial instant of time. A detailed derivation of relationships similar to (5.1) and (5.2) is given in [1]. 
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